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1 Introduction

Amplitudes with many external quarks and gluons are important for calculating the cross
section for multi-jet production (alone or together with other particles) at the Fermilab
Tevatron, CERN Large Hadron Collider, and future e+e� linear colliders. These processes
are the major backgrounds to many new-physics signals, so an accurate description of these
�nal states is essential.

Amplitudes involving many quarks and gluons are diÆcult to calculate, even at tree level.
Over the years, techniques have been developed to calculate these multi-parton amplitudes
eÆciently [1]. One aspect of such techniques is the systematic organization of the SU(N)
color algebra.1 For example, consider the amplitude for n gluons of colors a1; a2; : : : ; an
(ai = 1; : : : ; N2 � 1). At tree level, such an amplitude can be decomposed as [2]

M(ng) =
X

P (2;:::;n)

Tr (�a1�a2 � � � �an) A(1; 2; : : : ; n) ; (1)

where �a are the fundamental-representation matrices of SU(N), and the sum is over all
(n � 1)! permutations of (2; : : : ; n). Each trace corresponds to a particular color structure.
The factor associated with each color structure, A, is called a partial amplitude.2 It depends
on the four-momenta pi and polarization vectors �i of the n gluons, represented simply by i in
the argument of the partial amplitude. These partial amplitudes are far simpler to calculate
than the full amplitude,M, and they are also gauge invariant. There exist linear relations
amongst the partial amplitudes, called Kleiss-Kuijf relations, which reduce the number of
linearly-independent partial amplitudes to (n � 2)! [3]. A similar decomposition exists for
amplitudes containing any number of �qq pairs and gluons.

Recently, another decomposition of the multi-gluon amplitude has been introduced, based
on the adjoint representation of SU(N) rather than the fundamental representation [4, 5].
The n-gluon amplitude in this decomposition may be written as

M(ng) =
X

P (2;:::;n�1)
(F a2F a3 � � �F an�1)a1an A(1; 2; : : : ; n) ; (2)

where (F a)bc = �ifabc are the adjoint-representation matrices of SU(N) (fabc are the struc-
ture constants), and the sum is over all (n� 2)! permutations of (2; : : : ; n� 1). The partial
amplitudes that appear in this decomposition are the same as in the other decomposition,
but only the (n�2)! linearly-independent amplitudes are needed. The adjoint-representation
decomposition exists only for the multi-gluon amplitude.3

1Although we are interested speci�cally in QCD, for which N = 3, we leave N unspeci�ed whenever
possible.

2Also referred to as a dual amplitude or a color-ordered amplitude.
3There is yet another decomposition of the n-gluon amplitude based on the adjoint representation [6],

M(ng) =
1

2N

X
P (2;:::;n)

Tr (F a1F a2 � � �F an) A(1; 2; : : : ; n) ;

where the sum is over all (n� 1)! permutations of (2; : : : ; n). This was the original color decomposition; it
is no longer widely used.
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In this paper we introduce a third color decomposition of multi-parton amplitudes. This
decomposition is based on treating the SU(N) gluon �eld as an N �N matrix (A�)ij (i; j =
1; : : : ; N), rather than as a one-index �eld Aa

� (a = 1; : : : ; N2 � 1). The n-gluon amplitude
may be decomposed as

M(ng) =
X

P (2;:::;n)

Æi1j2Æ
i2
j3
� � � Æinj1 A(1; 2; : : : ; n) ; (3)

where the sum is over all (n � 1)! permutations of (2; : : : ; n). We dub this the color-
ow

decomposition, due to its physical interpretation. The partial amplitudes that appear in this
decomposition are the same as in the other two decompositions. The proof of this assertion
is contained in an Appendix.

The color-
ow decomposition has several nice features which we elaborate upon in this pa-
per. First, a similar decomposition exists for all multi-parton amplitudes, like the fundamental-
representation decomposition. Second, the color-
ow decomposition allows for a very eÆcient
calculation of multi-parton amplitudes. For example, we show that the amplitude for 12 glu-
ons (gg ! 10g) may be calculated about 60 times faster using the color-
ow decomposition
than using the fundamental-representation decomposition. Third, it is a very natural way
to decompose a QCD amplitude. As the name suggests, it is based on the 
ow of color, so
the decomposition has a simple physical interpretation. This is also useful for merging the
hard-scattering cross section with shower Monte-Carlo programs.

The remainder of the paper is organized as follows. In Section 2 we derive the color-
ow
Feynman rules for the construction of the partial amplitudes. Section 3 is devoted to the
all-gluon amplitude. In Section 4 we consider the amplitude for a �qq pair and any number of
gluons. Section 5 deals with the case of two �qq pairs and any number of gluons. The general
case is discussed in Section 6. We draw conclusions in Section 7.

2 Feynman rules

Consider the Lagrangian of an SU(N) gauge theory,

L =
1

2g2
TrF ��F�� + � (i 6D �m) ; (4)

where

D� = @� + igA� (5)

F�� = [D�;D� ] : (6)

The quark �eld transforms under the fundamental representation of SU(N),

 ! U : (7)

The gluon �eld A� transforms under the adjoint representation,

A� ! UA�U
y +

i

g
(@�U)U

y ; (8)
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such that the Lagrangian is invariant under local SU(N) transformations, U(x).
It is conventional to decompose the gluon �eld using the fundamental-representation

matrices,4

(A�)
i
j =

1p
2
Aa

�(�
a)ij ; (9)

and to rewrite the Lagrangian in terms of Aa
� (a = 1; : : : ; N2 � 1). This yields the usual

Feynman rules involving the fundamental-representation matrices �a and the structure con-
stants fabc, which arise from the commutation relation [�a; �b] = ifabc�c. The decomposition
of the n-gluon amplitude in terms of traces of fundamental-representation matrices, Eq. (1),
is then achieved by inverting the commutation relation, fabc = �iTr (�a�b�c � �a�c�b).

However, it is not necessary to decompose the gluon �eld (A�)ij in terms of fundamental-
representation matrices. Instead, one can work directly with the N�N matrix �eld (A�)ij �p
2(A�)ij.

5 The Lagrangian is

L = �1

4
(F��)ij(F��)

j
i + i � i


�(Æij@� + i
gp
2
(A�)

i
j) 

j �m � i 
i ; (10)

where
(F��)

i
j = @�(A�)

i
j � @�(A�)

i
j + i

gp
2
(A�)

i
k(A�)

k
j � i

gp
2
(A�)

i
k(A�)

k
j : (11)

This yields Feynman rules free of fundamental-representation matrices and structure con-
stants. These Feynman rules are given in Fig. 1.6 This representation of an SU(N) gauge
theory is well known from the 1=N expansion [7]. However, it is not commonly used for
ordinary calculations in QCD.

In our conventions, upper indices transform under the fundamental representation of
SU(N), lower indices under the antifundamental representation. Global SU(N) symmetry
implies that color is conserved at the interaction vertices, just as electric charge is conserved
at the interaction vertex of QED. Thus the interaction vertices may be represented by color-

ow Feynman rules, as shown in Fig. 1 [8]. The arrows track the 
ow of color from lower
indices to upper indices. The three-gluon vertex has two color 
ows, and the four-gluon
vertex has six.

The gluon propagator is proportional to

h(A�)
i1
j1
(A�)

i2
j2
i / Æi1j2Æ

i2
j1
� 1

N
Æi1j1Æ

i2
j2

(12)

and thus has two di�erent color 
ows. In contrast, the gluon propagator in the conventional
representation of color is proportional to

hAa
�A

b
�i / Æab : (13)

The more complicated color structure of the gluon propagator is a trade-o� for the simplicity
of the color structure of the interaction vertices (Fig. 1). As we shall see, this trade-o� is
worthwhile.

4Tr (�a�b) = Æab

5The factor
p
2 is introduced such that the �eld is canonically normalized.

6It is evident from the Feynman rules that the natural coupling constant is g=
p
2 rather than g.
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j1
i1

jq

iq

µ1 = i g√
2
γµ1 δ

iq
j1

δi1
jq︸ ︷︷ ︸

jq

iq

j1
i1

j1 i1

p1

j2
i2

p2

j3

i3

p3

µ3 µ2

µ1

= i g√
2

∑
[(p1 − p2)µ3gµ1µ2 + (p2 − p3)µ1gµ2µ3 + (p3 − p1)µ2gµ3µ1 ]

× δi1
j2

δi2
j3

δi3
j1︸ ︷︷ ︸

j1 i1

j2
i2j3

i3

j1
i1 j2

i2

j3
i3j4

i4
µ4

µ1

µ3

µ2

= i g2

2

∑
[2 gµ1µ3gµ2µ4 − gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3 ]

× δi1
j2

δi2
j3

δi3
j4

δi4
j1︸ ︷︷ ︸

j1
i1 j2

i2

j3
i3j4

i4

Figure 1: Color-
ow Feynman rules. All momenta are outgoing. The arrows indicate the

ow of color. The sum in the three-gluon vertex is over the two non-cyclic permutations of
(1,2,3); in the four-gluon vertex, the sum is over the six non-cyclic permutations of (1,2,3,4).
When calculating a partial amplitude the sum is dropped, as only one term in the sum
contributes to a given color 
ow.
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j1

i1 j2
i2

δi1
j2

δi2
j1

j1

i1 j2
i2

− 1
N δi1

j1
δi2
j2

Figure 2: The SU(N) gluon propagator may be split into a U(N) gluon propagator and a
U(1) gluon propagator. The U(1) gluon interacts only with quarks.

Due to the antisymmetry of the three- and four-gluon vertices, the second color 
ow
in the gluon propagator does not couple to these interactions. It couples only to the gluon
interaction with the quarks. This color 
ow acts as a \photon" that couples with strength gp

2

to quarks. We indicate this by splitting the gluon propagator into a U(N) gluon propagator
and a U(1) gluon propagator, as shown in Fig. 2. The U(1) gluon is unphysical, as evidenced
by its ghostly residue, which also carries a factor 1=N .

3 n-gluon amplitude

The n-gluon tree-level amplitude is constructed from three- and four-gluon vertices and the
U(N) gluon propagator; the U(1) gluon propagator does not couple to these interactions. It
follows directly from the color-
ow Feynman rules that the n-gluon tree-level amplitude has
the decomposition given in Eq. (3). We now describe how to calculate the partial amplitude,
which is the factor associated with a particular color 
ow.

To calculate A(1; 2; : : : ; n), one orders the gluons clockwise, as shown in Fig. 3, and
draws color-
ow lines, with color 
owing counter-clockwise, connecting adjacent gluons. One
then deforms the color-
ow lines in all possible ways to form the Feynman diagrams that
contribute to this partial amplitude. An example of a four-gluon partial amplitude is given

in
i1

i2

i3

i4

jnj1

j2

j3

j4

Figure 3: Color 
ow Æi1j2Æ
i2
j3
� � � Æinj1 . Each pair of indices ik; jk corresponds to an external gluon.
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i4
i1

i2
i3

j4
j1

j2
j3

= + +

Figure 4: Feynman diagrams corresponding to a four-gluon partial amplitude.

in Fig. 4. At each vertex, one needs only a single color 
ow in the three- and four-gluon
Feynman rules given in Fig. 1. Thus, when constructing a partial amplitude, the sum over
permutations in the three- and four-gluon vertices may be dropped.

It is evident that the Feynman diagrams that contribute to a partial amplitude are planar.
This is not due to an expansion in 1=N ; the partial amplitudes are exact. The number of
Feynman diagrams that contribute to an n-gluon partial amplitude is listed in Table 1. The
number grows approximately like 3:8n, rather than the factorial growth of the number of
Feynman diagrams that contribute to the full amplitude, approximately (2n)!.

This procedure is analogous to the \color-ordered" Feynman rules that have been devel-
oped for the fundamental-representation decomposition of multi-gluon amplitudes, Eq. (1)
[1, 2]. The similarity of this procedure with the construction of string amplitudes has been
noted. Each gluon corresponds to an open string with color-anticolor charges i; j on its ends.
The diagram in Fig. 3 represents the scattering of n open strings. The Feynman diagrams
in Fig. 4 correspond to the zero-slope limit of the scattering of four open strings [1, 2].

One obtains the cross section from the n-gluon amplitude by squaring and summing over
the colors of the external gluons. Since each external gluon has two indices, naively summing
counts N2 colors per gluon. To sum over only the N2 � 1 desired colors, it is suÆcient to
�rst apply the projection operator

P ii0

jj0 � Æij0Æ
i0

j �
1

N
ÆijÆ

i0

j0 (14)

to each external gluon before squaring and summing over colors. However, the second term
in the projection operator corresponds to a U(1) gluon, so it does not couple to the n-gluon
amplitude. Hence, in the case of the n-gluon amplitude, it is suÆcient to naively sum over
colors. This is not the case if external quarks are present, as we discuss in the following
section.

6



Table 1: Number of Feynman diagrams contributing to an n-gluon partial amplitude. The
number grows approximately like 3:8n. In contrast, the number of Feynman diagrams con-
tributing to the full amplitude grows factorially, approximately (2n)!.

# diagrams

n partial amplitude full amplitude

4 3 4

5 10 25

6 36 220

7 133 2485

8 501 34300

9 1991 559405

10 7335 10525900

11 28199 224449225

12 108281 5348843500

7



When squaring the amplitude and summing over colors, the leading term in 1=N is given
by the square of each color 
ow:

Æi1j2Æ
i2
j3
� � � Æinj1 (Æi1j2Æi2j3 � � � Æinj1 )y = Æi1j2Æ

i2
j3
� � � Æinj1 (Æj2i1 Æj3i2 � � � Æj1in) = Nn: (15)

Cross terms between di�erent color 
ows yield monomials Nn�m, where m is even. This
contrasts with the squaring and summing over colors in the fundamental-representation
decomposition, Eq. (1). There, each term obtained is a polynomial in N , rather than a
monomial [1].7 In this sense, squaring and summing over colors is simpler in the color-
ow
decomposition, Eq. (3).

For processes with many external gluons, it is necessary to sum over colors using Monte-
Carlo techniques in order to produce a cross section with suÆcient speed to be useful in
practice [10, 11, 12, 13]. The color-
ow decomposition is well suited for such a calculation.
One chooses, via Monte-Carlo methods, a particular color assignment for the external gluons.
This is accomplished by randomly selecting the colors of the upper and lower indices. A
necessary (but not suÆcient) condition for a nonvanishing color assignment (one which has
at least one color 
ow) is that the number of upper and lower indices of the color R must be
the same; similarly for the colors G and B. In general, only a small fraction of the (n� 1)!
color 
ows contribute to a given color assignment, so it is necessary to evaluate only a small
subset of the partial amplitudes. This is crucial, as most of the computational time is spent
on calculating the partial amplitudes. We give in the third column of Table 2 the average
number of partial amplitudes that contribute to a given nonvanishing color assignment.
Although this number grows factorially with the number of gluons, it grows approximately
as (n=3)! rather than (2n)!.

We have written a code to identify the color 
ows that contribute to a given color
assignment.8 Once the color 
ows are identi�ed, one must evaluate the corresponding par-
tial amplitudes. The amplitude for a given color assignment is the sum of these partial
amplitudes, with unit coeÆcients, as per Eq. (3). No matrix multiplication is necessary to
evaluate the color coeÆcients.

Let us compare the eÆciency of this procedure with that of the fundamental-representa-
tion decomposition, Eq. (1). First we use the standard Gell-Mann matrices (see the Appendix
of Ref. [14]) to evaluate the color coeÆcients. The average number of partial amplitudes that
must be evaluated per nonvanishing color assignment is given in the �rst column of Table 2.9

It is evident that the fundamental-representation decomposition using the Gell-Mann basis
is far less eÆcient than the color-
ow decomposition.

In Ref. [10] a particular basis for the fundamental-representation matrices is chosen in
order to minimize the average number of traces of matrices that contribute to a given non-
vanishing color assignment. That basis is

�1 =
1p
2

0
B@

0 1 0
0 0 0
0 0 0

1
CA ; �2 =

1p
2

0
B@

0 0 1
0 0 0
0 0 0

1
CA ; �3 =

1p
2

0
B@

0 0 0
1 0 0
0 0 0

1
CA ;

7In the case of the n-gluon amplitude in the fundamental-representation decomposition, only the leading
term in the polynomial in N need be retained, as subleading terms are associated with U (1) gluons [9].

8This code is available at http://madgraph.physics.uiuc.edu.
9The results for n = 11; 12 are diÆcult to calculate, so we approximate them by extrapolating the results

for n � 10.
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Table 2: Average number of partial amplitudes, for n-gluon scattering, that must be
evaluated per nonvanishing color assignment in three di�erent color decompositions: the
fundamental-representation decomposition (using both the Gell-Mann matrices and the
matrices used in Ref. [10]), the color-
ow decomposition, and the adjoint-representation
decomposition. The fundamental-representation decomposition is much more eÆcient us-
ing the matrices of Ref. [10]. The color-
ow decomposition is much more eÆcient than
the fundamental-representation decomposition, especially when n is large. The adjoint-
representation decomposition is almost as eÆcient as the color-
ow decomposition, but re-
quires the multiplication of sparse 9� 9 matrices.

Decomposition

Fundamental

n Gell-Mann Ref. [10] Color-
ow Adjoint

4 4.83 3.02 1.28 1.15

5 15.2 7.26 1.83 1.52

6 56.5 20.6 3.21 2.55

7 251 68.0 6.80 5.53

8 1280 254 17.0 15.8

9 7440 1080 48.7 56.4

10 47800 4930 158 243

11 337000 25500 570 1210

12 2590000 148000 2250 6750

9



�5 =
1p
2

0
B@

0 0 0
0 0 1
0 0 0

1
CA ; �6 =

1p
2

0
B@

0 0 0
0 0 0
1 0 0

1
CA ; �7 =

1p
2

0
B@

0 0 0
0 0 0
0 1 0

1
CA ;

�4 =
1

2

0
B@

1 0 0
0 �1 0
0 0 0

1
CA ; �8 =

1p
12

0
B@

1 0 0
0 1 0
0 0 �2

1
CA :

Using this basis, we give in the second column of Table 2 the average number of partial
amplitudes that contribute to a given nonvanishing color assignment.10 Although much less
than the results using the Gell-Mann basis, these numbers are signi�cantly greater than in
the color-
ow decomposition, especially when n is large. Hence the color-
ow decomposition
is much more eÆcient than the fundamental-representation decomposition.

The reason the fundamental-representation decomposition of Ref. [10] is less eÆcient for
evaluating color coeÆcients is due to the matrices �4 and �8 above, which have more than
one nonvanishing element, and may therefore appear in many traces. To avoid this, it is
advantageous to replace these two matrices with the three matrices

�4 =
1p
2

0
B@

1 0 0
0 0 0
0 0 0

1
CA ; �8 =

1p
2

0
B@

0 0 0
0 1 0
0 0 0

1
CA ; �9 =

1p
2

0
B@

0 0 0
0 0 0
0 0 1

1
CA ;

thereby expanding to the fundamental representation of U(3). In so doing, one is including
the U(1) gluon; however, we know that this gluon decouples from the n-gluon tree amplitude,
so no error is being made. Using this expanded basis of fundamental-representation matrices
is equivalent to the color-
ow decomposition, Eq. (3), because each matrix is proportional
to a product of Kronecker deltas ((�1)ij = Æi1Æ

2
j=
p
2, (�2)ij = Æi1Æ

3
j=
p
2, etc.). However, the

color-
ow decomposition leads to a faster evaluation of the color coeÆcients, since no matrix
multiplication is necessary, while the multiplication of sparse 3 � 3 matrices is required in
the fundamental-representation decomposition.

Another method for Monte-Carlo summation over color is used in Ref. [12]. Although
the fundamental-representation decomposition is used, it is converted to the color-
ow de-
composition before the summation over color is performed. This is achieved via

fa1a2a3(�a1)i1j1(�
a2)i2j2(�

a3)i3j3 = �i(Æi1j2Æi2j3Æi3j1 � Æi1j3Æ
i3
j2
Æi2j1) : (16)

This paper goes on to promote color from a discrete to a continuous variable, and performs
a Monte-Carlo integration over color. It is not clear that anything is gained by making color
a continuous variable, since a Monte-Carlo summation over color is already possible when
color is a discrete variable.

We next consider the summation over color in the adjoint-representation decomposition,
Eq. (2). This decomposition uses only the (n� 2)! linearly-independent partial amplitudes,
so it is potentially more eÆcient than the color-
ow decomposition. Rather than using the
standard SU(3) structure constants based on the Gell-Mann matrices (see the Appendix of
Ref. [14]), we use a set based on the nine U(3) fundamental-representation matrices above,

10These numbers agree, within Monte-Carlo uncertainty, with those given in Ref. [10] for n = 8; 9; 10.
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again exploiting the fact that the U(1) gluon decouples. The structure constants in this
basis are antisymmetric in the �rst two indices only, and are given by ([�a; �b] = ifabc�c)

f314 = f138 = f512 = f167 = f141 = f811 = f235 = f624 = f269 = f721 = f242 = f922 = f376

= f433 = f383 = f653 = f758 = f579 = f585 = f955 = f466 = f696 = f877 = f797 = i=
p
2 ;

where all other structure constants, not related to the above by interchange of the �rst two
indices, vanish. This set of structure constants leads to a much faster evaluation of the color
coeÆcients in Eq. (2) than the standard set of structure constants based on the Gell-Mann
matrices. For n-gluon scattering, the average number of partial amplitudes that must be
evaluated per nonvanishing color assignment is given in the fourth column of Table 2.11 It
is comparable in eÆciency to the color-
ow decomposition. However, the color-
ow decom-
position leads to a much faster evaluation of the color coeÆcients, since the multiplication
of sparse 9 � 9 matrices is required in the adjoint-representation decomposition.

To demonstrate the utility of the color-
ow decomposition, we calculate the subprocess
cross sections with 11 and 12 external gluons at tree level (gg ! 9g and gg ! 10g), results
that have not yet appeared in the literature. We employ the same cuts as Ref. [10],

pT i > 60 GeV ; j�ij < 2 ; �Rij > 0:7 ; (17)

where the subprocess cross section with 10 external gluons (gg ! 8g) at
p
ŝ = 1500 GeV

was presented, using �S = 0:12 for illustrative purposes. We use the Berends-Giele recursion
relations [15] to obtain the partial amplitudes,12 and evaluate the basic currents upon which
these relations are based using HELAS [16]. We increase the subprocess energy for n = 11; 12
to
p
ŝ = 2000; 2500 GeV, respectively, to maintain a roughly constant fraction of generated

events that pass the cuts. No e�ort is made to optimize the generation of the phase space;
our goal is to show that the use of the color-
ow decomposition speeds up the calculation
so much (a factor of about 40 for n = 11 and about 60 for n = 12, see Table 2) that one
can obtain the gg ! 9g and gg ! 10g subprocess cross sections with a straightforward
phase-space generator such as RAMBO [17]. Using this procedure, we con�rm the n = 10
result of Ref. [10], and give the n = 11; 12 results in Table 3.13

The color-
ow decomposition nicely lends itself to merging with a shower Monte Carlo,
such as HERWIG [18, 19] or Pythia [20], which is based on the color 
ow of a given hard-
scattering subprocess. A given color assignment typically has several color 
ows that con-
tribute. One of these color 
ows is randomly chosen to be associated with the event, weighted
by the square of the partial amplitude corresponding to that color 
ow. The weight does
not include a color coeÆcient (since it is unity), unlike the fundamental-representation de-
composition [10]. The event is then evolved with a shower Monte Carlo. This neglects the
interference between di�erent color 
ows, but this interference is suppressed by a power of
1=N2. This is not a de�ciency of the color-
ow decomposition, but rather is an inherent
feature of the shower Monte-Carlo approximation for soft radiation [21].

11The adjoint-representation decomposition yields fewer nonvanishing color assignments than the color-

ow decomposition. For example, for n = 4, the number of nonvanishing color assignments is 73 in the
adjoint-representation decomposition, 127 in the color-
ow decomposition.

12The number of calculations that must be performed to evaluate a partial amplitude with these recursion
relations grows only linearly, in contrast to the number of Feynman diagrams, which grows exponentially,
approximately 3:8n (see Table 1).

13The code NGLUONS is available at http://madgraph.physics.uiuc.edu.
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Table 3: Subprocess cross section (pb) for gg ! (n� 2)g at subprocess energy
p
ŝ (GeV).

n
p
ŝ (GeV) �̂(gg ! (n� 2)g) (pb)

10 1500 0:70� 0:04

11 2000 0:30� 0:02

12 2500 0:097 � 0:006

4 �qq and n gluons

Consider the case where there is one quark line and n gluons. The outgoing quark has
color iq, the outgoing antiquark has anticolor jq. The color 
ow is identical to that of the
n-gluon case, except the �qq replaces one of the gluons, as shown in Fig. 5. The color-
ow
decomposition is

M(�qq + ng) =
X

P (1;:::;n)

Æ
iq
j1
Æi1j2 � � � Æinjq A(q; 1; 2; : : : ; n; �q) ; (18)

where the sum is over all n! permutations of (1; : : : ; n). The arguments q, �q in the partial
amplitude represent the momenta and helicities of the outgoing quark and antiquark. This
decomposition follows directly from the Feynman rules of Figs. 1 and 2 and is similar to the
decomposition of the n-gluon amplitude. The U(1) gluon propagator, which couples only to
quarks, does not contribute at tree level since there is only one quark line. As an example,
the Feynman diagrams contributing to a particular partial amplitude for the case of one �qq
and two gluons are shown in Fig. 6.

Before squaring the amplitude and summing over colors, one must apply the projection
operator, Eq. (14), to each external gluon. This generates terms proportional to powers of

in
iq

i1

i2

i3

jn
jq

j1

j2

j3

Figure 5: The color 
ow Æ
iq
j1
Æi1j2 � � � Æinjq for one �qq pair and n gluons.
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i2

iq

i1

j2

jq

j1

= +

Figure 6: Feynman diagrams corresponding to a partial amplitude for one �qq pair and two
gluons.

(�1=N). In the n-gluon case, these terms vanish. In the present case, they do not vanish
due to the presence of a quark line to which the external U(1) gluon couples. One obtains

P � � �PM(�qq + ng) =
X

P (1;:::;n)

Æ
iq
j1
Æi1j2 � � � Æinjq A(q; 1; 2; : : : ; n; �q)

+
�
� 1

N

� X
P (1;:::;n)

Æ
iq
j1
Æi1j2 � � � Æin�1jq

Æinjn A(q; 1; 2; : : : ; n� 1; �q; n)

+
�
� 1

N

�2 1

2!

X
P (1;:::;n)

Æ
iq
j1
Æi1j2 � � � Æin�2jq

Æ
in�1
jn�1

Æinjn A(q; 1; 2; : : : ; n� 2; �q; n� 1; n)

...

+
�
� 1

N

�n
Æ
iq
jq
Æi1j1 � � � Æinjn A(q; �q; 1; 2; : : : ; n) ; (19)

where the partial amplitudes of the subleading terms in 1=N are linear combinations of the
leading partial amplitudesA(q; 1; 2; : : : ; n; �q). The subleading partial amplitudeA(q; 1; : : : ; n�
k; �q; n� k +1; : : : ; n) corresponds to the amplitude for n� k gluons and k U(1) gluons. For
example, the subleading partial amplitude for one U(1) gluon is given by the linear combi-
nation

A(q; 1; 2; : : : ; �q; n) = A(q; 1; 2; : : : ; n; �q) +A(q; 1; 2; : : : ; n; n� 1; �q) + � � �+A(q; n; 1; 2; : : : ; �q) :
(20)
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i2

iq

i1

j2

jq

j1

= +

Figure 7: Feynman diagrams corresponding to a partial amplitude for one �qq pair, a gluon,
and a U(1) gluon.

This is analogous to the photon-decoupling equation14 for the n-gluon amplitude [1, 2, 22],

0 = A(1; 2; : : : ; n) +A(1; 2; : : : ; n; n� 1) + � � �+A(1; n; 2; : : : ; n� 1) : (21)

More generally, the linear relations for the subleading partial amplitudes with k U(1) gluons
in terms of the leading partial amplitudes are analogous to the Kleiss-Kuijf relations amongst
the multi-gluon amplitudes [3].

The sum over permutations of the subleading terms with k U(1) gluons contains a factor
1=k!, because terms that di�er only by the exchange of U(1) gluons are identical. Thus there
are n!=k! di�erent permutations in the terms with k U(1) gluons. There is only a single term
in which all gluons are U(1), given at the end of Eq. (19).

It is more eÆcient to calculate the subleading partial amplitudes directly, rather than
as a linear combination of the leading partial amplitudes. This is done by replacing k of
the external gluons by U(1) gluons, and associating a factor (�1=N) with each U(1) gluon.
For example, the Feynman diagrams for the a subleading partial amplitude for the case of
a �qq pair, one gluon, and one U(1) gluon are shown in Fig. 7. Since the U(1) gluon couples
only to quarks, the non-Abelian diagram present in the leading partial amplitude, Fig. 6,
does not appear. The non-Abelian diagram cancels when the subleading partial amplitude
is calculated as a linear combination of the leading partial amplitudes via Eq. (20). Another
feature of subleading partial amplitudes is that there are contributions from nonplanar di-
agrams, since a U(1) gluon can be attached to any quark line without changing the color

ow. Thus the number of Feynman diagrams contributing to a subleading partial amplitude
with k U(1) gluons grows like k!.15

14Also known as the dual Ward identity.
15Using the Berends-Giele recursion relations [15], the number of computations necessary to evaluate such

a partial amplitude grows only exponentially rather than factorially.
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The amplitude of Eq. (19) can be used to perform a Monte-Carlo summation over color.
As in the all-gluon case, one �rst selects a color assignment by randomly choosing the colors
of the upper and lower indices, then checking that the number of upper and lower R indices
are the same, and similarly for B and G; this is a necessary (but not suÆcient) condition for
a nonvanishing color assignment. One identi�es the color 
ows corresponding to this color
assignment, including the subleading color 
ows. The partial amplitudes corresponding to
these color 
ows are then evaluated. The amplitude is the sum of the partial amplitudes,
with coeÆcients of (�1=N) raised to the power of the number of U(1) gluons, as per Eq. (19).

In Table 4 we compare the eÆciency of the color-
ow decomposition with that of the
fundamental-representation decomposition, which is given by [1, 23, 24, 25]

M(�qq + ng) =
X

P (1;:::;n)

(�a1 � � � �an)iqjq A(q; 1; : : : ; n; �q) : (22)

In the fundamental-representation decomposition, the matrices of Ref. [10], given in the
previous section, are used. We list the average number of partial amplitudes, both leading
and subleading, that must be evaluated per nonvanishing color assignment. As in the all-
gluon case, the color-
ow decomposition is much more eÆcient when the number of external
gluons is large. The gain is not as large as in the all-gluon case, however. This is to
be expected, as external quarks are treated identically in the color-
ow and fundamental-
representation decompositions; only the gluons are treated di�erently [25]. The color-
ow
decomposition is of comparable eÆciency for the case of one �qq pair and no �qq pairs (Table 2)
for a given number of external particles.

In the previous section, we showed that the fundamental-representation decomposition is
equivalent to the color-
ow decomposition for the n-gluon amplitude when the fundamental
representation is expanded to include a ninth matrix. This basis of nine matrices includes
the U(1) gluon, but since this particle decouples from the n-gluon amplitude, no error is
being made. This same procedure cannot be carried out for amplitudes involving quarks,
since the U(1) gluon couples to quarks. Terms must be added to cancel the contribution
of the U(1) gluons; this is the role of the subleading terms in the color-
ow decomposition,
Eq. (19).

Merging the hard-scattering cross section for �qq+ng with a shower Monte Carlo program
proceeds similarly as in the case of all gluons discussed in the previous section. For a
given color assignment, one weights each contributing color 
ow by the square of the partial
amplitude (including the square of the corresponding power of (�1=N)). The color 
ow
associated with the event is then randomly selected from the weighted color 
ows [11].

5 Two �qq and n gluons

We now consider two quark pairs and n gluons. Since there are two quark lines, a new
feature enters: Feynman diagrams with a U(1) gluon exchanged between the quark lines.
These diagrams are suppressed by 1=N due to the propagator of the U(1) gluon (see Fig. 2).

The leading partial amplitudes in 1=N have a color 
ow analogous to that of Fig. 5,
but with two �qq pairs. For example, we show in Fig. 8 the Feynman diagrams contributing
to a partial amplitude for two (distinguishable) quark pairs and one gluon. In contrast,
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Table 4: Average number of partial amplitudes, for the scattering of one �qq pair and n
gluons, that must be evaluated per nonvanishing color assignment in two di�erent color
decompositions: the fundamental-representation decomposition used in Ref. [10], and the
color-
ow decomposition. The color-
ow decomposition is much more eÆcient than the
fundamental-representation decomposition, especially when n is large.

Decomposition

n Fund. (Ref. [10]) Color-
ow

2 1.44 1.55

3 2.56 2.22

4 5.66 3.66

5 15.3 7.14

6 48.8 16.3

7 179 42.6

8 748 126

9 3460 417

10 17400 1520
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i1

iq1

iq2

j1

jq1

jq2

= + +

Figure 8: Feynman diagrams corresponding to a partial amplitude for two (distinguishable)
�qq pairs and a gluon.

we show in Fig. 9 the Feynman diagrams contributing to a subleading partial amplitude,
which contains an internal U(1) gluon. Because the U(1) gluon carries no color, the color

ow factors into two separate color 
ows, each beginning with a quark and ending with an
antiquark. The color-
ow decomposition for 2 �qq pairs and n gluons is thus

M(�q1q1 + �q2q2 + ng) =
X

P (q2;1;:::;n)

Æ
iq1
jq2
Æ
iq2
j1
Æi1j2 � � � Æinjq1 A(q1; �q2; q2; 1; 2; : : : ; n; �q1)

� 1

N

X
P (1;:::;n)

nX
r=0

(Æ
iq1
j1
Æi1j2 � � � Æirjq1 ) (Æ

iq2
jr+1

Æ
ir+1
jr+2

� � � Æinjq2 ) A(q1; 1; 2; : : : ; r; �q1; q2; r + 1; : : : ; n; �q2) :

(23)

The second line contains the subleading terms, with the factor �1=N from the U(1)-gluon
propagator made explicit. A sum over permutations of a sum over partitions of the gluons
between the two quark lines is performed on these terms.

The color-
ow decomposition for two identical �qq pairs is similar. However, the �rst and
second lines in Eq. (23) no longer correspond to leading and subleading in 1=N ; both contain
terms that are leading and subleading. In the example of two �qq pairs and one gluon given
above, the additional (subleading) Feynman diagrams in Fig. 10 contribute to the color 
ow
in the �rst line of Eq. (23) if the quark pairs are identical.

As usual, one must apply a projection operator, Eq. (14), to each external gluon before
squaring the amplitude. As we saw in the previous section, this can be done diagram-
matically by replacing external gluons with U(1) gluons. For example, in the case of two
(distinguishable) �qq pairs and one external gluon, the Feynman diagrams contributing to
a subleading term generated by applying the projection operator to the external gluon are
shown diagrammatically in Fig. 11.
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i1

iq1

iq2

j1

jq1

jq2

= +

Figure 9: Feynman diagrams corresponding to a subleading partial amplitude for two (dis-
tinguishable) �qq pairs and a gluon.

+

Figure 10: Additional Feynman diagrams contributing to the partial amplitude of Fig. 8 for
two identical �qq pairs and a gluon.
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i1

iq1

iq2

j1

jq1

jq2

= +

+ +

Figure 11: Feynman diagrams corresponding to a partial amplitude for two (distinguishable)
�qq pairs and a U(1) gluon.

6 General case

The general case of any number of �qq pairs and gluons follows the same pattern established
in the previous section. Consider, for example, the case of six �qq pairs and any number of
gluons. A typical term in the color-
ow decomposition is

(Æiq1 � � � Æjq2 Æ
iq2 � � � Æjq3Æ

iq3 � � � Æjq1 )(Æ
iq4 � � � Æjq5Æ

iq5 � � � Æjq4 )(Æ
iq6 � � � Æjq6 )

�A(q1; : : : ; �q2; q2; : : : ; �q3; q3; : : : ; �q1; q4; : : : ; �q5; q5; : : : ; �q4; q6; : : : ; �q6) ; (24)

where the gluon labels are tacit. If the quarks are distinguishable, this term is of order
(�1=N)2, since there are three separate color 
ows joined by two U(1) gluons. If some of
the quarks are identical, this term does not correspond to a unique order in 1=N , as we saw
in the previous section. As usual, one must apply a projection operator, Eq. (14), to each
external gluon before squaring the amplitude.

The color-
ow decomposition di�ers from the fundamental-representation decomposition
in the treatment of the gluons. Thus, in the case of an amplitude with only external quarks
and antiquarks, the two decompositions are identical [1, 25].
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7 Conclusions

We have described a new color decomposition for tree-level multi-parton amplitudes in an
SU(N) gauge theory. This decomposition is based on color 
ow, which corresponds to the
conservation of color in QCD. An amplitude is decomposed into a sum of partial amplitudes,
each of which corresponds to a particular color 
ow, and has a coeÆcient which is a power
of (�1=N). These partial amplitudes are constructed from the color-
ow Feynman rules of
Figs. 1 and 2. The color-
ow decomposition is a very natural way to organize a calculation
of a multi-parton amplitude. Although we have discussed the color-
ow decomposition at
tree level, it is clear from the Feynman rules that it may be applied at the loop level as well
[9, 22].

The color-
ow decomposition of a multi-parton amplitude is free of fundamental-represen-
tation matrices and structure constants | they simply never occur in the construction
of the amplitude. This allows for a very eÆcient numerical evaluation of the amplitude
using Monte-Carlo techniques. We showed that multi-parton amplitudes may be evaluated
muchmore eÆciently in the color-
ow decomposition than in the fundamental-representation
decomposition that has traditionally been used for such calculations. This will lead to faster
codes for the calculation of multi-jet processes in QCD, which are the dominant backgrounds
to signals for new physics at hadron and e+e� colliders. The color-
ow decomposition also
lends itself nicely to the merging of the hard-scattering cross section with shower Monte-Carlo
programs that use the color 
ow to evolve parton �nal states into jets of hadrons.

The color-
ow decomposition applies not only to pure QCD processes, but also to pro-
cesses with additional particles, such as leptons, photons, W and Z bosons, and the Higgs
boson. The color-
ow decomposition will be implemented in the new event generator MadE-
vent [26], based on the code MadGraph [27].
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Appendix

In this appendix we prove that the partial amplitudes that appear in the color-
ow de-
composition of the n-gluon amplitude, Eq. (3), are identical to those that appear in the
fundamental-representation decomposition, Eq. (1). We then show that this is also true in
the general case of one or more �qq pairs and any number of gluons.

The connection between the two decompositions is made by contracting each of the
matrices in the fundamental-representation decomposition, �a, with the matrix (�a)ij, and
using

(�a)ij(�
a)i

0

j0 = Æij0Æ
i0

j �
1

N
ÆijÆ

i0

j0 : (25)

The color coeÆcient of the fundamental-representation decomposition is thereby transformed
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into that of the color-
ow decomposition, plus additional terms suppressed by powers of 1=N :

Tr (�a1�a2 � � ��an) (�a1)i1j1(�a2)i2j2 � � � (�an)injn = Æi1j2Æ
i2
j3
� � � Æinj1 +O(1=N) : (26)

If we ignore the additional terms of O(1=N), we can conclude that the partial amplitudes in
the two decompositions are identical. We now prove that these additional terms do indeed
cancel.

We know on physical grounds that the O(1=N) terms, which correspond to U(1) gluons,
cancel in the full amplitude. This can be proven via the Kleiss-Kuijf relations amongst the
partial amplitudes [3]. Here we present a simpler proof, which uses the adjoint-representation
decomposition, Eq. (2), as an intermediate step.

Using the Kleiss-Kuijf relations, it was shown in Ref. [5] that the partial amplitudes in the
fundamental-representation decomposition are equal to those in the adjoint-representation
decomposition. We therefore need only show that the O(1=N) terms vanish when we re-
late the adjoint-representation decomposition to the color-
ow decomposition. The color
coeÆcients in the adjoint-representation decomposition may be written

(F a2F a3 � � �F an�1)a1an = Tr (�a1[�a2 ; : : : ; [�an�1; �an] : : :]) ; (27)

using [�a; �b] = ifabc�c. We now contract this with (�a1)i1j1 � � � (�an)injn to transform to the
color-
ow decomposition.

Using Eq. (25), it is easy to show that for an arbitrary N �N matrix M ,

[�a;M ]ij(�
a)i

0

j0 = Æij0M
i0

j �M i
j0Æ

i0

j ; (28)

where the 1=N terms in Eq. (25) have cancelled. Similarly, for arbitrary N � N matrices
M;O,

Tr (�a[M;O])(�a)ij = [M;O]ij ; (29)

where the 1=N terms have again cancelled. Applying these two relations to the contraction
of Eq. (27) with (�a1)i1j1 � � � (�an)injn shows that the only terms that survive are of the form of
the �rst term on the right-hand side of Eq. (26); all 1=N terms cancel. This completes the
proof that the partial amplitudes in the color-
ow decomposition, Eq. (3), are the same as
in the fundamental-representation decomposition, Eq. (1).

In the general case of one or more �qq pairs and n gluons, one again transforms from the
fundamental-representation decomposition to the color-
ow decomposition by contracting
with (�a1)i1j1 � � � (�an)injn and applying Eq. (25). The 1=N terms that are generated are just
the 1=N terms obtained in the color-
ow decomposition by applying the projection operator,
Eq. (14), to the external gluons.
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